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Dana Kulić and Yoshihiko Nakamura
Department of Mechano-Informatics, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
{dana,nakamura}@ynl.t.u-tokyo.ac.jp

Abstract

The ability to learn during continuous and
on-line observation would be advantageous for
humanoid robots, as it would enable them
to learn during co-location and interaction in
the human environment. However, when mo-
tions are being learned and clustered on-line,
there is a tradeoff between classification ac-
curacy and the number of training examples,
resulting in potential misclassifications both
at the motion and hierarchy formation level.
This paper presents an approach enabling fast
on-line incremental learning, combined with
an incremental memory consolidation process
correcting initial misclassifications and errors
in organization, to improve the stability and
accuracy of the learned motions, analogous
to the memory consolidation process following
motor learning observed in humans. Follow-
ing initial organization, motions are randomly
selected for re-classification, at both low and
high levels of the hierarchy. If a better re-
classification is found, the knowledge struc-
ture is re-organized to comply. The approach
is validated during incremental acquisition of
a motion database containing a variety of full
body motions.

1. Introduction

As robots move to human environments, the
ability to learn and imitate from observing hu-
man behavior will become important. This
area of research has received increasing attention
(Breazeal and Scassellati, 2002, Schaal et al., 2003).
However, many of the approaches proposed thus
far consider the case where there is an off-line ini-
tial learning stage, followed by a static execution
and recognition stage. In this case, the number
of motions to be learned can be specified a-priori,
and the designer can ensure that each motion ex-
ample is correctly labeled to the appropriate mo-
tion group. However, to ensure adaptability to
its changing environment and interaction partners,

a robot should be capable of continuous learning
over its entire lifespan. We have been working to-
wards algorithms that enable the robot to observe,
segment and classify demonstrated actions on-line
(Kulić et al., 2007a, Kulić et al., 2008b) during co-
location and interaction with the (human) teacher.
During this type of learning, the number of mo-
tion primitives is not known in advance and may
be continuously growing, and must be determined
autonomously by the robot, as it is observing the
motions.

In the proposed approach (Kulić et al., 2007a,
Kulić et al., 2008b), a hierarchical tree structure
is incrementally formed representing the motions
learned by the robot. Each node in the tree rep-
resents a motion primitive, which can be used to
recognize a similar motion, and also to generate
the corresponding motion for the robot. Due to
the fact that motions are being sorted incremen-
tally, the algorithm may produce errors as com-
pared to off-line clustering and organization. Two
types of errors are possible: errors in classifying in-
dividual motions, and errors in the structure for-
mation of the motion hierarchy. However, it can
still be advantageous for the robot to quickly learn
a rough model of a new motion, rather than wait-
ing for a large number of examples to become avail-
able, as the learned motion may then be further re-
fined through other learning modalities, such as prac-
tice (Bentivegna et al., 2006) and feedback from the
teacher (Nicolescu and Matarić, 2005), which may
be more effective than repeated observation alone.

In this paper, we propose a mechanism for
incremental, on-line correction of initial cluster-
ing and organization errors during on-line mo-
tion observation and learning. Our approach
is inspired by recent biological studies showing
that the structure of motion memory changes
following acquisition, in a process termed mem-
ory consolidation (Shadmehr and Holcomb, 1997,
Krakauer and Shadmehr, 2006). Following initial
model formation, the model is changed over time to
stabilize and improve the initial representation.



1.1 Related Work

Robot skill learning from observation is a longstand-
ing area of research. (Breazeal and Scassellati, 2002)
and (Schaal et al., 2003) provide an overview of pro-
posed approaches for motion learning by imitation.
As noted by Breazeal and Scasellati, the majority
of algorithms discussed in the literature assume that
the motions to be learned are segmented a-priori, and
that the model training takes place off-line.

(Ogata et al., 2005) develop a connectionist archi-
tecture suitable for long term, incremental learning.
In their work, a neural network is used to learn a nav-
igation task during cooperative task execution with a
human partner. The authors introduce a new train-
ing method for the recursive neural network, which
avoids the problem of memory corruption. Their ap-
proach is based on neuroscience research, which has
shown that the hippocampus is used as temporary
(short term) memory, and that this memory is con-
solidated into long term memory during sleep in a
process analogous to rehearsal. However, in this case,
the robot learns only one task, and no hierarchical
organization of knowledge takes place.

Hidden Markov Models have been a popular
technique for human motion modeling, and have
been used in a variety of applications, including
skill transfer (Dillmann et al., 1999), sign language
and gesture modeling and human motion modeling
(Billard et al., 2006, Inamura et al., 2004). A com-
mon paradigm is Programming by Demonstration
(PbD) (Dillmann et al., 1999). While PbD is a gen-
eral paradigm, in many of the systems demonstrated
thus far, the number of motions is specified a-priori,
the motions are clustered manually and trained off-
line, and then a static model is used during the recog-
nition phase.

In order to learn from on-line demonstration, the
system must group together similar motions on-line,
without a-priori specifying the number of motions.
While many off-line clustering approaches have been
proposed in the literature (see (Jain et al., 1999) for
a review), to the authors’ knowledge, few algorithms
consider on-line, incremental clustering of multi-
dimensional time series data. One recent example
is the work of (Rodrigues et al., 2008) describing the
online divisive-agglomerative clustering approach for
time series data. Time series data are compared via
the Pearson’s correlation coefficient, and an incre-
mental procedure is developed to build a tree struc-
ture through on-line observation of the data.

This paper is based on the incremental clus-
tering approach proposed by (Kulić et al., 2007a,
Kulić et al., 2008b). An on-line, incremental learn-
ing algorithm is used to build an initial model of
the motion space, as motions are perceived. In this
approach, a Hidden Markov Model based represen-
tation is used to abstract motion patterns as they

are perceived. Individual motion patterns are then
clustered in an incremental fashion, based on intra
model distances. The resulting clusters are then used
to form a group model, which can be used for mo-
tion generation. Errors in the initial placement of
both individual motions and motion groups are then
also corrected on-line at a later time, in a process
analogous to memory consolidation in humans.

1.2 Connections to Biological Models

A key question in biology and cognitive science is
how humans and other primates acquire (learn) mo-
tion primitives. (Heyes and Ray, 2000, Heyes, 2001)
propose the Associative Sequence Learning (ASL)
theory of imitation. They postulate that learning
is based on action units, which are the basic units
of the majority of actions being observed. Learn-
ing proceeds via two sets of associative processes,
resulting in horizontal and vertical links. The hor-
izontal process forms sequence associations between
sensory representations of the action units forming
the demonstrated action. The vertical process forms
associations between the sensory representation for
each action unit and the associated motor repre-
sentation of the same component. The ASL the-
ory postulates that the development of the imitation
mechanism is highly experience-dependent, consist-
ing of correlation links between sensory and motor
data which are formed over time. As also noted by
(Calinon and Billard, 2007), our approach of mod-
eling the sensory data flow as a set of state vec-
tors linked temporally with a stochastic model (the
HMM) and obtained incrementally over time, based
on the experiences observed by the robot, conforms
with the ASL theory. The HMM model learning cor-
responds to the horizontal process of the ASL model,
which forms sequence associations between sensory
representations of the action units.

A second area of study is the neural pro-
cesses occurring during and immediately fol-
lowing learning. Neuroscience studies of motor
memory formation have shown that following
learning, the motor memory does not remain
constant in the brain, but rather changes over
time in a process termed memory consolidation
(Stickgold, 2005, Krakauer and Shadmehr, 2006,
Shadmehr and Holcomb, 1997,
Diekelmann and Born, 2007). There appear
to be two complementary memory consolida-
tion processes: an initial stage of stabiliza-
tion, through which the memories become
resistant to interference, and a second stage,
where system wide re-organization is performed
(Stickgold, 2005, Diekelmann and Born, 2007).
The first stage (the waking stage) occurs in the
hours immediately following motor memory ac-
quisition, while the subject is awake, and can be



detected by evidence of disruptions corrupting the
memory during a limited time window following
initial acquisition (Krakauer and Shadmehr, 2006).
The second stage (sleep-dependent stage) occurs
during sleep, and can be detected by measur-
ing performance improvements following sleep,
without any further practice of the motion
(Stickgold, 2005, Diekelmann and Born, 2007).
During this type of consolidation, brain imaging
studies show that brain regions active during mem-
ory formation are repeatedly reactivated during
sleep as the motion representation is gradually re-
distributed to different networks and brain regions,
thought to signify a system-level consolidation
(Diekelmann and Born, 2007).

(McClelland et al., 1995) describe the approaches
to modeling learning and memory via connection-
ist systems. They highlight the importance of in-
terleaved learning, whereby a particular item is not
learned instantly, but is acquired gradually, through
a series of presentations interleaved with exposure to
other items.

In our approach, following observations of simi-
lar motions, an initial model of the abstracted mo-
tion is formed, corresponding to the waking stage.
Then, at a later time, system wide re-organization
is performed by selecting learned motions and re-
classifying, therefore correcting initial clustering and
hierarchy formation errors, in a process analogous to
rehearsal memory consolidation found in the sleep-
dependent stage.

2. Incremental Behavior Learning

In the proposed system, the task of the learning sys-
tem is to autonomously extract and learn motion
primitives from time series data obtained through
on-line observation of a human demonstrator. A
motion primitive is defined as full-body motion seg-
ment (i.e., an action unit (Heyes and Ray, 2000,
Heyes, 2001)) which is re-used multiple times dur-
ing task or behavior execution. A motion prim-
itive may be described in terms of the joint
or Cartesian coordinates. Motion primitives can
be segmented autonomously from the continuous
time-series data stream via stochastic segmentation
(Kulić et al., 2008a).

Each time a new motion sequence is observed, the
robot must decide if the observed motion is a known
motion, or a new motion to be learned. In addition,
over the lifetime of the robot, as the number of ob-
served motions becomes large, the robot must have
an effective way of storing the acquired knowledge
for easy retrieval and organization. In the proposed
approach, a hierarchical tree structure is incremen-
tally formed representing the motions learned by the
robot. Each node in the tree consists of a group
model which represents a motion primitive, which

can be used to recognize a similar motion, and also
to generate the corresponding motion for the robot.

An overview of the algorithm and the incremental
hierarchy formation is shown in Figure 1. The algo-
rithm initially begins with one behavior group (the
root node). Each time a motion is observed from the
teacher, it is encoded into a Hidden Markov model
(Figure 1(a)). The encoded motion is then compared
to existing behavior groups via a tree search algo-
rithm, using the symmetric model distance measure
(Rabiner, 1989, Kulić et al., 2007b) (Figure 1(b)),
and placed into the closest group (Figure 1(c)). Each
time a group is modified, a hierarchical agglomera-
tive clustering algorithm (Jain et al., 1999) is per-
formed within the exemplars of the group (Figure
1(d)). If a cluster with sufficiently similar data is
found, a child group is formed with this data subset
(Figure 1(e,f)). The time series data of the motion
examples forming the child group is then used to gen-
erate a single group model, which is subsequently
used for both behavior recognition and generation.
Therefore the algorithm incrementally learns and or-
ganizes the motion primitive space, based on the
robot’s lifetime observations. The algorithm pseu-
docode is shown in Figure 2. We assume that mo-
tion primitives can be well separated via a distance
measure, such that clustering via a tree structure
can be accomplished. Note that the tree structure
is formed by creating a child node only when a sim-
ilar grouping is found, and not by splitting nodes,
thereby reducing the likelihood of overfitting.

1: procedure IncrementalCluster
2: Step1 Encode observation sequence Oi into an

HMM λi

3: Step2 Search the behavior tree for the closest group
λGj to the current observation model λi, based on the
inter-model distance

4: Step3 Place λi into the closest group Gc

5: Step4 Perform clustering on all the exemplar mo-
tions within Gc

6: Step5 If a sufficiently similar subgroup of motions
is found, form a new group Gn, as a child of Gc, con-
taining the observation sequences of the subgroup

7: Step6 Using the observations sequences of the new
subgroup, form the group model λGn

8: end procedure

Figure 2: Segmenting Algorithm Pseudocode

Each newly acquired observation sequence is en-
coded into a Hidden Markov Model. Once the newly
observed behavior is encoded, it is compared to exist-
ing groups (if any). Here, the distance between two
models can be calculated (Rabiner, 1989) by Equa-
tion 1.

D(λ1, λ2) =
1
T

[logP (O(2)|λ1)− logP (O(2)|λ2)] (1)



(a) (b) (c) (d) (e) (f)

Figure 1: Overview of the Segmenting Algorithm (A square represents a data sequence, and a circle represents a

group). (a) a new observation sequence is observed and encoded as an HMM; (b) the observation sequence is compared

to existing groups via tree search; (c) the new sequence is placed in the closest existing group; (d) local clustering

is performed on the modified group (zoomed in view of modified group); (e) a new subgroup is formed from similar

motions in the modified group; (f) the subgroup is added to the tree as a child of the modified group.

where λ1, λ2 are two models, O(2) is an observation
sequence generated by λ2 and T is the length of the
observation sequence. Since this measure is not sym-
metric, the average of the two intra distances is used
to form a symmetric measure. This distance measure
is based on the relative log likelihood that a gener-
ated sequence is generated by one model, as com-
pared to a second model. It represents a Kullback-
Leibler distance between the two models.

The repository of known groups is organized in a
tree structure, so that the new observation sequence
does not need to be compared to all known behaviors.
The comparison procedure is implemented as a tree
search. If the distance between the new observation
and the cluster is larger than a threshold based on
the maximum intra observation distance DG

max, this
cluster will not be considered as a possible match for
the new observation sequence. If there are multiple
candidate clusters, the new sequence is placed in the
closest cluster. If there are no candidates, the new se-
quence is placed in the parent cluster. In the case of
a new motion pattern which is completely dissimilar
to any existing motion patterns, the motion pattern
will be placed into the root node.

When a new observation sequence is added to a
group, a clustering procedure is invoked on that
group, to determine if a subgroup may be formed.
The complete link hierarchical clustering algorithm
is used to generate the hierarchical tree structure
within a group (Jain et al., 1999). Clusters are
formed based on two criteria: number of leaves in
the subgroup, and the maximum proximity measure
of the potential subgroup. The proximity measure is
computed as follows:

Dcutoff = µ−Kcutoffσ (2)

where Dcutoff is the distance cutoff value (i.e.,
only clusters where the maximum distance is less
than this value will be formed), Kcutoff is a con-
stant parameter, µ is the average distance between
observations in the group, and σ is the standard de-
viation among all the distances in the node. If a
new subgroup is generated, a new group model is
trained using the raw observation sequences from all
the group elements. The generated model is subse-

quently used by the robot to generate behaviors. The
group model replaces the individual observations in
the parent node.

If one of the group elements allocated to the
new cluster is already a group model, the gener-
ated motion sequence based on that model is used
for the training. In this case, a modified form of
the re-estimation formulas for multiple observation
sequences (Rabiner, 1989) is used. The algorithm
is modified by over-weighting the group models, in
order to account for the fact that there are mul-
tiple observation sequences stored in the generated
model, and therefore more weight should be given
to the group model, as compared to the individual
observation sequences.

3. On-line Memory Consolidation

The incremental clustering algorithm described
above has been shown to produce reliable re-
sults, robust against presentation order. In all
the experiments performed thus far, no false pos-
itive errors have been reported at the leaf node
(Kulić et al., 2008b). However, depending on the
presentation order, two types of errors can occur:
false negative errors (where the behavior is not clas-
sified at the correct hierarchy level), and tree struc-
ture errors (where the tree structure is not identical
to the tree structure that would be observed during
off-line clustering). These types of errors occur due
to the incremental nature of the algorithm, where not
enough information is available during early execu-
tion, when there are few examples, to find the correct
segmentation boundary. However, as more data be-
come available, these initial mistakes can also be cor-
rected in an incremental, on-line fashion, analogous
to memory consolidation in biological systems. The
process is carried out by re-applying the incremental
clustering procedure multiple times to data that is al-
ready known, at a later (possibly off-line) stage. This
can be thought of as a type of rehearsal, similar to
the idea proposed by (Ogata et al., 2005). Similar to
(McClelland et al., 1995), we seek to improve perfor-
mance through the benefits of interleaved learning.

Two types of corrections are proposed: correc-
tions at the local level, dealing with misclassifications



of individual exemplars, and corrections at the tree
level, dealing with errors in structure formation. In
the case of local correction, an individual exemplar
model is selected, while in the case of structure cor-
rection, a group model is selected. For both types of
corrections, the basic process is the same: a model is
selected from the knowledge base, removed from its
current location in the knowledge structure, and the
incremental clustering algorithm used for classifying
new motion, described in Section II, is re-applied.
Various strategies can be considered for the selection
of the next node to be analyzed for potential correc-
tion, for example, favoring recently classified models,
or favoring those models where the group variability
is large. In the experiments described below, a sim-
ple random selection strategy is employed. Figure 3
outlines the consolidation algorithm for exemplars,
while Figure 4 shows the consolidation algorithm for
the group models.

1: procedure MotionConsolidation
2: Select sample node ns

3: Select sample motion ms from ns

4: nb = TreeSearch(ms) Search for the best match for
the sample motion

5: if nb = ns then
6: return (No correction required)
7: else
8: Remove ms from ns

9: if deletable(ns) then
10: If few motions remain in ns, and none are

group motions
11: Remove all N motions from ns

12: Delete ns from tree
13: for i = 1 : N do
14: Call IncrementalCluster(mi)
15: end for
16: else
17: Call IncrementalCluster(ms)
18: end if
19: end if
20: end procedure

Figure 3: Memory Consolidation at the Exemplar Level

Exemplar reconsolidation can also trigger changes
in the tree structure, if a node is emptied of exem-
plars as a result of reconsolidations. In this case, the
node is removed from the tree, and the remaining
exemplars re-assigned by a call to the incremental
clustering procedure.

4. Experiments

The proposed approach was tested on a data set con-
taining a series of 9 different human movement obser-
vation sequences obtained through a motion capture
system (Kadone and Nakamura, 2005). The data set
contains joint angle data for a 20 degree of freedom

1: procedure NodeConsolidation
2: Select sample node ns, with parent node np

3: Remove ns from np

4: nb = TreeSearch(ns) Search for the best match for
the group model of the node

5: if nb = np then
6: Return ns to np

7: return (No correction required)
8: else
9: Add ns to nb

10: end if
11: end procedure

Figure 4: Memory Consolidation at the Node Level

humanoid model from multiple observations of walk-
ing (WA - 28 observations), cheering (CH - 15 ob-
servations), dancing (DA - 7 observations), kicking
(KI - 19 observations), punching (PU - 14 observa-
tions), sumo leg raise motion (SL - 13 observations),
squatting (SQ - 13 observations), throwing (TH - 13
observations) and bowing (BO - 15 observations).

In the experiments, the performance of the incre-
mental clustering and hierarchy formation algorithm
with and without memory consolidation is compared.
Motion sequences are presented to the algorithm in
random order. Motion sequences are presented one
at a time, simulating on-line, sequential acquisition.
After each motion is presented, the incremental clus-
tering algorithm is executed, performing incremen-
tal clustering. When including memory consolida-
tion, memory consolidation on one randomly selected
node and one randomly selected motion is performed
after each 10 new exemplars, and for 100 times at
the end of the acquisition. In all of the tests per-
formed, whether using reconsolidation or not, the al-
gorithm correctly segments the behaviors such that
the resulting leaf nodes represent the grouping that
would be obtained with an off-line method. Out of
100 simulation runs performed, there was no cases of
misclassification at the leaf nodes, showing that the
final segmentation is robust to presentation order.
Here, misclassification is defined as a false positive
error (for example, a walk motion being misclassi-
fied as a punch motion). However, there were cases
of false negative errors, where a motion which should
have been recognized as a known motion was instead
placed into a non-leaf node (for example, the root
node).

Sample segmentation results for the non-
consolidation algorithm are shown in Figs. 5, 6 and
7. Note that the actual order of node formation will
vary depending on the motion presentation order.
The average rate of false negative errors and the
standard distribution of the false negative errors is
shown for each motion in Tables 1 and 2. As noted
before, no false positive errors were observed in any



PU/TH WA KI BO SL CH SQ DA

RunId = 20

Leaf Groups Formed

Figure 5: Sample Segmentation Result, Kcuttoff = 1.2

KI PU TH WA SL CH SQ BO DA

RunId = 16

Leaf Groups Formed

Figure 6: Sample Segmentation Result, Kcuttoff = 0.9

of the experiments performed.
The algorithm parameter Kcutoff (the parameter

which controls when a new cluster is formed from an
existing cluster) determines the resultant tree struc-
ture. A high value for Kcutoff (i.e., only clusters
composed of a tight data set are formed) tends to
result in a flat tree structure (as shown in Figure
5, while low values of Kcutoff result in a deep tree
structure, as shown in Figure 6. As the cluster for-
mation parameter is relaxed, deeper trees tend to be
formed. However, the resulting tree structure tends
to be dependant on the presentation order. In the
case of a high cutoff value (see Figure 5), the re-
sulting tree structure is flat, and fairly insensitive to
presentation order. The resulting structure is con-
sistent with off-line clustering result. In about 9%
of cases, the ’dance’ group fails to form, in contrast
to the off-line clustering result, since this group con-
tains the least examples. At the high cutoff value,
the punch and throw motions are too similar to sub-
cluster, resulting in a single hybrid generated mo-
tion (indicated as PU/TH in Figure 5). This is also
indicated in the high false negative error rates for
the punch and throw motions in Table 1, as the mo-
tions do not tend to be recognized as belonging to a
distinct motion type, but are instead placed in the
group node. The generated motion resulting from
that subcluster is shown in Figure 8. As can be seen
in the figure, the motion is an averaging of the two
motions.

When low values of Kcutoff are used, nodes are
quicker to form, and the resulting tree structure be-
comes more dependant on presentation order. The
similarity level at which nodes will form is highly de-
pendent on presentation order. Figures 6 and 7 show
two examples of different tree structures formed,
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Figure 7: Sample Segmentation Result, Kcuttoff = 0.9

Table 1: False Negative Errors, Kcuttoff = 1.2. (An error

rate of 1 indicates that all motions fail to be recognized)

Motion Average Std. Deviation
WA 0.0068 0.0316
CH 0.0273 0.1447
DA 0.0843 0.2725
KI 0.0621 0.0789
PU 0.9879 0.0891
SL 0.0254 0.1247
SQ 0.0377 0.1332
TH 0.9900 0.1000
BO 0.0047 0.0358

from two simulation runs. Note that the identified
leaf nodes remain the same. In addition, using the
lower cutoff value makes it easier to subdivide the
similar throw and punch motions. This can be seen
from the lower false negative rate in Table 2, as sig-
nificantly more of the punch and throw motions are
correctly recognized. Note that some punch throw
motions still remain difficult to recognize, and are in-
stead placed in the punch/throw parent node, which
is classified as a false negative error in Table 2. Even
though the cutoff level was the same for both ex-
periments, the similarity level of the nodes formed
differed, based on the presentation order. The result
in Figure 6 is consistent with global clustering, while
in the result shown in Figure 7, one node is incor-
rectly assigned. The CH node is incorrectly assigned
to the PU/TH/KI/SQ branch of the tree, whereas
global clustering would have assigned the CH node
to the WA/SL branch. This type of error is due to
the local nature of the algorithm, i.e. clustering is
being performed when only a part of the data set
is available. Therefore, there is a tradeoff when se-
lecting the Kcutoff value between facilitating quick
node formation and differentiation and introducing
misclassifications in the hierarchy tree.

If the relationship between motions is not impor-
tant for the task, a flat tree result is acceptable, and
a high value of Kcuttoff can be applied. However,
it would be desirable to correctly extract both the
leaf node groups, as well as a deeper tree, represent-
ing the hierarchy of motions. This tree information
could then be used to analyze the relationships be-
tween motions and to accelerate learning of new mo-
tions belonging to the same branch of the tree. If



Figure 8: Generated Hybrid Punch/Throw Motion.

Table 2: False Negative Errors, Kcuttoff = 0.9. (An error

rate of 1 indicates that all motions fail to be recognized)

Motion Average Std. Deviation
WA 0.0168 0.0786
CH 0.0407 0.0918
DA 0.1929 0.3934
KI 0.0526 0.0876
PU 0.4093 0.2240
SL 0.0492 0.1744
SQ 0.0546 0.1084
TH 0.5638 0.3585
BO 0.0360 0.0896

WA CH SL KI PU TH BO SQ DA

RunId = 87

Leaf Groups Formed

Figure 9: Sample Segmentation Result, Kcuttoff = 0.9,

with memory consolidation

memory consolidation is applied, errors in the hier-
archy tree can be corrected incrementally, allowing
the algorithm to take advantage of fast node forma-
tion, while reducing both exemplar and node classifi-
cation errors. Figure 9 shows a sample tree structure
formed following incremental acquisition and mem-
ory consolidation. Table 3 shows the false negative
error rate for each motion type when memory con-
solidation is applied. As can be seen from the table,
false negative errors are significantly reduced when
memory consolidation is used.

The resulting tree structures were also analyzed
and compared to the global clustering result. Table
4 shows the results for the three cases considered: a
high value of Kcutoff (1.2) with no memory consoli-
dation, a low value of Kcutoff (0.9) with no memory
consolidation, and a low value of Kcutoff (0.9) with
memory consolidation. As can be seen from the re-
sults, memory consolidation reduces the mean tree
error (computed based on edit distance), while pro-
ducing deeper resultant trees.

Table 3: False Negative Errors, Kcuttoff = 0.9, Including

memory consolidation. (An error rate of 1 indicates that

all motions fail to be recognized)

Motion Average Std. Deviation
WA 0.0007 0.0050
CH 0.0007 0.0067
DA 0.0514 0.2192
KI 0.0326 0.0616
PU 0.1393 0.2397
SL 0.0100 0.0706
SQ 0.0300 0.1098
TH 0.2585 0.3639
BO 0.0027 0.0210

Table 4: Tree Analysis Results

Kcutoff Consolidation Mean Error Mean Depth
1.2 No 2.11 2.08
0.9 No 1.96 2.94
0.9 Yes 1.21 3.81

5. Conclusions

This paper develops a novel approach towards on-
line, long term incremental learning and hierarchical
organization of whole body motion primitives. The
learned motions are aggregates of the observed mo-
tions, which have been autonomously clustered dur-
ing observation. The clustered motions are organized
into a hierarchical tree structure, where nodes closer
to the root represent broad motion descriptors, and
leaf nodes represent more specific motion patterns.
Errors made by the incremental clustering algorithm
due to lack of sufficient data as a result of incre-
mental acquisition are also corrected on-line via a
mechanism for memory consolidation. The memory
consolidation algorithm selects learned motions and
re-classifies them using the current tree structure, in
a procedure analogous to rehearsal. Both individual
motion exemplars, as well as motion groupings can
be processed in the same manner. In this way, the
memory consolidation algorithm corrects both indi-
vidual motion misclassifications and hierarchy for-
mation errors, resulting in both improved classifica-
tion and an improved structure over time.
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